Skip to main content

Linear Programming Problem _MCQ

 

 


1.In Graphical solution the feasible region is_____________. 

   a. where all the constraints are satisfied simultaneously. 

   b. any one constraint is satisfied.

   c. only the first constraint is satisfied.

   d. any one of the above conditions.

 

2.Some case in LPP has _________.

   a. one optimal solutions. 

   b. two optimal solutions.

   c. three. 

   d. multiple optimal solution. 

 

3.An LPP deals with problems involving only_________. 

   a. single objective.

   b. multiple objectives.

   c. two objective. 

   d. none of these. 

 

4.Which of the following is not associated with any LPP_____________. 

   a. feasible solution. 

   b. optimum solution.

   c. deterministic in nature. 

   d. Quadratic equation. 

 

5.The graphical method can be used when an LPP has ______ decision variables.

   a. 2

   b. 3

   c. 4

   d. more than 4

 

6.Which method is used to get optimal solution in graphical method of solving an      LPP?

   a. corner point solution method

   b. polynomial method

   c. modi method

   d. quadratic method

 

7.A constraint implies ____.

   a. cost function

   b. the restriction put on resources.

   c. profit function.

   d. none of these.

 

8.In the graphical method, all the constraints are plotted in the graph as

   a. a curve

   b. a straight line

   c. a circle

   d. none of these

 

9.In Graphical solution the feasible solution is any solution to an LPP which satisfies    _______. 

  a. only objective function. 

  b. non-negativity restriction. 

  c. only constraint.

  d. all the three. 

 

10.In Graphical solution the redundant constraint is____________. 

    a. which forms the boundary of feasible region. 

    b. which do not optimizes the objective function.

    c. which does not form boundary of feasible region. 

    d. which optimizes the objective function. 



    1:A  2:D  3:A  4:D  5:A  6:A  7:B  8:B  9:B  10:C.

 


11.If an LPP has more than one optimal solution, it is called...

    a. infeasibility.

    b. multiple optimal solution.

    c. unbounded solution.

    d. redundancy.

 

12.Optimal solution in an LPP is ___________. 

    a. which maximizes or minimizes the objective function. 

    b. which maximizes the objective function. 

    c. which minimizes the objective function. 

    d. which satisfies the non-negativity restrictions. 


13.Unbounded solution in an LPP is ___________. 

    a. where the objective function can be decreased indefinitely.

    b. which maximizes the objective function. 

    c. where the objective function can be increased or decreased indefinitely. 

    d. where the objective function can be increased indefinitely. 

 

14.Every LPP can be written in an alternate form and that is called____.

    a. primal

    b. dual

    c. rival

    d. none of these

 

15.If primal is of "maximization" type, then its dual will be____.

    a. maximization

    b. minimization

    c. dual cannot be obtained

    d. none of these

 

16.The canonical form of LPP if the objective function is of maximization, then all the constraints other than non-negativity conditions are __________.

   a. greater than type.

   b. lesser than type. 

   c. greater than or equal to type. 

   d. lesser than or equal to type. 

 

17.The canonical form of LPP if the objective function is of minimization then all the constraints other than non-negativity conditions are ___________. 

   a. greater than type. 

   b. lesser than type. 

   c. greater than or equal to type. 

   d. lesser than or equal to type.

 

18.In standard form LPP, the decision variables____.

   a. can be negative.

   b. must be zero.

   c. must be non-negative.

   d. none of these.

 

19.In an LPP the Objective function is to be____________. 

    a. Minimized.

    b. maximized. 

    c. minimized or maximized. 

    d. Maximin. 


20.The region on the graph sheet with satisfies the constraints including the non- negativity restrictions is called the _______space. 

    a. solution. 

    b. interval. 

    c. concave. 

    d. convex. 


21.The __________is the method available for solving an L.P.P. 

   a. graphical method.

   b. least cost method.

   c. MODI method. 

   d. Hungarian method. 



11:B   12:A  13:C  14:B  15:B  16:D  17:C  18:C  19:C  20:A  21:A.



  1. sources: https://brainmass.com/business/business-management/50-multiple-choice-questions-on-quantitative-methods-69857
  2. https://www.slideshare.net/akshaygavate1/ds-mcq
    https://wps.prenhall.com/

 

Comments

Post a Comment

Popular posts from this blog

Transportation Problem_MCQs

1 .Transportation problem is a special class of __________.  a. LPP.  b. assignment problem.  c. none of the two. d. both 1 and 2.  2 .The Objective function of Transportation problem is to________.  a. maximize the total cost.  b. minimize or maximize the total cost.  c. minimize the total cost.  d. total cost should be zero.  3 . In Transportation problem the preferred method of obtaining either optimal or very close to the optimal solution is _____________.  a. north west corner rule.  b. least cost method.  c. Vogel’s approximation method.  d. simplex method .  4 .In Transportation problem the improved solution of the initial basic feasible solution is called ___________.  a. basic solution .  b. optimal solution.  c. degenerate solution.  d. non-degenerate solution.  5 .In Transportation problem optimal solution can be verified by using ________.  a. north west corner rule.  b. least cost method .  c. MODI method.  d. matrix method

Transportation Problem_short theory

what is transportation problem : The transportation problem is a special type of linear programming problem where the objective consists in minimizing transportation cost of a given item from a number of sources or origins to a number of destinations .   Balanced Transportation Problems :  where the total supply is equal to the total demand. Unbalanced Transportation Problems : where the total supply is not equal to the total demand.       When the supply is higher than the demand, a dummy destination is introduced in the equation to make it equal to the supply (with unit(shipping) costs of 0).       When the demand is higher than the supply, a dummy source is introduced in the equation to make it equal to the demand. IBFS (initial basic feasible solution) : This involves Initial solution to the given balanced Transportation Problems. This is known as Initial Basic Feasible Solution (IBFS) . It is required to derive an initial feasible solution; the only